塵埃粒子計數(shù)器是利用丁達爾現(xiàn)象(Tyndall Effect)來檢測粒子。丁達爾效應是用John Tyndall的名字命名的,通常是膠體中的粒子對光線的散射作用引起的。一束明亮的光照在空氣或霧中的灰塵上,所產(chǎn)生的散射就是丁達爾現(xiàn)象。
當折射率變化時,光線就會發(fā)生散射。這就意味著在液體中,汽泡對光線的散射作用和固體粒子是一樣的。米氏理論(Mie Theory)描述了粒子對光的散射作用。
光的散射情況會隨著粒子尺寸的變化而變化。在粒子計數(shù)器中,米氏理論較重要的結(jié)果以及它對光散射的預測都與之相關。當粒子尺寸比光的波長要小得多的時候,光散射主要是朝著正前方。而當粒子尺寸比光波長要大得多的時候,光散射則主要朝直角和后方方向散射。
光可以看做是沿著傳播方向進行垂直振蕩的波。這一振蕩方向就是所謂的偏振。入射光的偏振非常重要。在以前的例子里,光的散射是在入射光的偏振平面內(nèi)進行測量的。
粒子尺寸在5μm時的散射情況類似;而具有偏振現(xiàn)象,粒子尺寸在0.3μm)時的散射情況有很大不同。由于用對數(shù)表示,變化不到十倍的,都看不到了。
散射光的強度隨著頻率的改變而變化:較短的波長意味較強的散射。在其他條件都相同的情況下,藍光的散射強度大約是紅光的10倍。大部分粒子計數(shù)器采用的都是近紅外或紅色激光;直到*近,這還都是*符合經(jīng)濟效益的選擇。藍色氣體和半導體激光器價格都很貴;而且半導體激光器的使用壽命也很短。
空氣粒子計數(shù)器
所示的粒子計數(shù)器是使用傳感器的典型設計;氣流、激光、以及聚光鏡彼此成直角。 在傳感器的出口處有一個真空裝置,把空氣經(jīng)過傳感器抽走。而空氣中的粒子則將激光散射。散射光又會被后面的聚光鏡聚焦到光學探測器上,隨后把光轉(zhuǎn)換成電壓信號,并且進行放大和濾波。此后,這個信號從模擬的轉(zhuǎn)換成數(shù)字信號,并且由微處理器對它進行分類。微處理器也會通過接口將計數(shù)器連接到控制數(shù)據(jù)收集系統(tǒng)上。
用于粒子計數(shù)的激光器有兩種:一種是氣體激光器,如氦氖(HeNe)激光器和氬離子(argon-ion)激光器;另外就是半導體激光器。氣體激光器能夠生產(chǎn)強烈的單色光,有時甚至是偏振光。氣體激光器產(chǎn)生準直高斯光束,而半導體激光器則產(chǎn)生出一個小的發(fā)散點光源,通常發(fā)散光有兩個不同的軸,并且總是出現(xiàn)多種模式。由于發(fā)散光具有多軸性,半導體激光器通常都有一個橢圓形的輸出,這帶來了一定的挑戰(zhàn),也帶來了一定的優(yōu)勢。不同軸的散射光意味著要么勉強接受這一橢圓形的輸出,要么設計一套復雜而昂貴的光學鏡來做補償。另一方面,橢圓光束很適合用于某些應用,利用長軸,可以得到更好的覆蓋范圍。